Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 273: 125851, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447339

RESUMO

This work presents the first bioplatform described to date for the determination of galactose-α-1,3-galactose (α-Gal), a non-primate mammalian oligosaccharide responsible for almost all cases of red meat allergy. The bioplatform is based on the implementation of an indirect competitive immunoassay and enzymatic labeling with the enzyme horseradish peroxidase (HRP) built on the surface of magnetic microparticles (MBs) and amperometric transduction on screen-printed carbon electrodes (SPCEs) using the H2O2/hydroquinone (HQ) system. The target α-Gal competed with biotinylated α-Gal immobilized on the surface of neutravidin-modified MBs for the limited immunorecognition sites of a detection antibody enzymatically labeled with an HRP-conjugated secondary antibody. The resulting magnetic immunoconjugates were trapped on the surface of the SPCE working electrode and amperometric transduction was performed, providing a cathodic current variation inversely proportional to the concentration of α-Gal in the analyzed sample. The developed biotool was optimized, characterized and applied with satisfactory results to the determination of the target allergen in different samples of raw and processed meats.


Assuntos
Alérgenos , Técnicas Biossensoriais , Hipersensibilidade Alimentar , Animais , Galactose , Peróxido de Hidrogênio/química , Peroxidase do Rábano Silvestre , Peroxidase , Carne , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas/métodos , Mamíferos
2.
Int J Biol Macromol ; 248: 125996, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499706

RESUMO

This work reports a dual immunoplatform for the simultaneous detection of two epithelial glycoproteins of the mucin family, mucin 1 (MUC1) and mucin 16 (MUC16), whose expression is related to adverse prognosis and minimal residual disease (MRD) in colorectal cancer (CRC). The developed immunoplatform involves functionalised magnetic microparticles (MBs), a set of specific antibody pairs (a capture antibody, cAb, and a biotinylated detector antibody b-dAb labelled with a streptavidin-horseradish peroxidase, Strep-HRP, polymer) for each target protein and amperometric detection at dual screen-printed carbon electrodes (SPdCEs) using the hydroquinone (HQ)/horseradish peroxidase (HRP)/H2O2 system. This dual immunoplatform allows, under the optimised experimental conditions, to achieve LOD values of 50 and 1.81 pg mL-1 (or mU mL-1) for MUC1 and MUC16, respectively, and adequate selectivity for the determination of the two targets in the clinic. The developed immunoplatform was employed to analyse CRC cell protein extracts (1.0 µg/determination) with different metastatic potential providing results in agreement with those obtained by blotting technologies but using affordable and applicable point-of-care instruments. This new biotool also emerges competitive in state-of-the-art electrochemical immunoplatforms seeking a compromise among simplicity, reduction of test time and analytical characteristics.


Assuntos
Técnicas Biossensoriais , Neoplasias Colorretais , Humanos , Mucinas , Peróxido de Hidrogênio , Neoplasia Residual , Peroxidase do Rábano Silvestre , Neoplasias Colorretais/diagnóstico , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos
3.
Anal Chim Acta ; 1257: 341153, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37062567

RESUMO

This work reports the first amperometric biosensor for the simultaneous determination of the single or total content of the most relevant human immunoglobulin isotypes (hIgs) of anti-dsDNA antibodies, dsDNA-hIgG, dsDNA-hIgM, dsDNA-hIgA and dsDNA-three hIgs, which are considered relevant biomarkers in prevalent autoimmune diseases such as systemic lupus erythematosus (SLE) as well as of interest in neurodegenerative diseases such as Alzheimer's disease (AD). The bioplatform involves the use of neutravidin-functionalized magnetic microparticles (NA-MBs) modified with a laboratory-prepared biotinylated human double-stranded DNA (b-dsDNA) for the efficient capture of specific autoantibodies that are enzymatically labeled with horseradish peroxidase (HRP) enzyme using specific secondary antibodies for each isotype or a mixture of secondary antibodies for the total content of the three isotypes. Transduction was performed by amperometry (-0.20 V vs. the Ag pseudo-reference electrode) using the H2O2/hydroquinone (HQ) system after trapping the resulting magnetic bioconjugates on each of the four working electrodes of a disposable quadruple transduction platform (SP4CEs). The bioplatform demonstrated attractive operational characteristics for clinical application and was employed to determine the individual or total hIgs classes in serum from healthy individuals and from patients diagnosed with SLE and AD. The target concentrations in AD patients are provided for the first time in this work. In addition, the results for SLE patients and control individuals agree with those obtained by applying ELISA tests as well as with the clinical ranges reported by other authors, using individual detection methodologies restricted to centralized settings or clinical laboratories.


Assuntos
Peróxido de Hidrogênio , Lúpus Eritematoso Sistêmico , Humanos , Anticorpos Antinucleares , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/complicações , Isotipos de Imunoglobulinas , Autoanticorpos , DNA
4.
Mikrochim Acta ; 189(4): 143, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35286499

RESUMO

A dual immunosensor is reported for the simultaneous determination of two important immunity-related cytokines: BAFF (B cell activation factor) and APRIL (a proliferation-induced signal). Sandwich-type immunoassays with specific antibodies (cAbs) and a strategy for signal amplification based on labelling the detection antibodies (dAbs) with binary MoS2/MWCNTs nanostructures and using horseradish peroxidase (HRP) were implemented. Amperometric detection was carried out at screen-printed dual carbon electrodes (SPdCEs) through the hydroquinone HQ/H2O2 system. The developed dual immunosensor provided limit of detection (LOD) of 0.08 and 0.06 ng mL-1 for BAFF and APRIL, respectively, and proved to be useful for the determination of both cytokines in cancer cell lysates and serum samples from patients diagnosed with autoimmune diseases and cancer. The obtained results agreed with those found using ELISA methodologies.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Anticorpos , Técnicas Biossensoriais/métodos , Proliferação de Células , Citocinas , Técnicas Eletroquímicas , Humanos , Peróxido de Hidrogênio , Imunoensaio/métodos , Molibdênio
5.
Talanta ; 241: 123226, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066283

RESUMO

This work reports the first electrochemical bioplatform for the determination of soy traces in food. The bioplatform involves sandwich-type immunoassays using specific antibodies for ß-conglycinin and glycinin, which are the main allergenic soy proteins, and carboxylic acid-modified magnetic microbeads. Amperometric detection at -0.20 V (vs. an Ag pseudo-reference electrode) was performed using single or dual screen-printed carbon electrodes and the H2O2/hydroquinone (HQ) system. The measured variation in the cathodic current was directly proportional to the concentration of target allergenic proteins. The developed bioplatforms exhibit a good selectivity and sensitivity providing limits of detection (LOD) values of 0.03 and 0.02 ng mL-1 for ß-conglycinin and glycinin, respectively. The determination of both proteins can be carried out in only 1.5 h. The electrochemical bioplatforms allow their accurate determinations (with results statistically comparable to those provided by ELISA methodologies) in raw cookie dough and baked cookies enriched with soy flour. The results obtained confirm, in a pioneering way with electrochemical biosensors, the possibility of discriminating samples incurred with as little as 0.0005 ppm of a food allergen in model cookie extracts.


Assuntos
Técnicas Biossensoriais , Globulinas , Antígenos de Plantas , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio , Proteínas de Armazenamento de Sementes , Proteínas de Soja
6.
Bioelectrochemistry ; 144: 108041, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34929532

RESUMO

This work reports the first electroanalytical bioplatform to date for the determination of antibodies against aquaporin-4 (AQP4-Abs), whose serum level is considered as relevant biomarker for certain autoimmune diseases. The bioplatform relies on the use of magnetic microparticles modified with the biotinylated protein for the capture of specific antibodies. The captured IgGs are enzymatically labelled with a secondary antibody conjugated to the horseradish peroxidase (HRP) enzyme. Amperometric transduction is performed using the H2O2/hydroquinone (HQ) system, which results in a cathodic current variation directly proportional to the concentration of the target antibodies. The evaluation of the analytical and operational characteristics of the developed bioplatform shows that it is competitive in terms of sensitivity with the only biosensor reported to date as well as with the commercially available ELISA kits. The achieved limit of detection value is 8.8 pg mL-1. In addition, compared to ELISA kits, the developed bioplatform is advantageous in terms of cost and point of care operation ability. The bioplatform was applied to the analysis of control serum samples with known AQP4-Abs contents as well as of sera from healthy individuals and patients diagnosed with Systemic Lupus Erythematosus (SLE) and Alzheimer (AD) diseases, providing results in agreement with the ELISA methodology.


Assuntos
Peróxido de Hidrogênio
7.
Anal Methods ; 13(31): 3471-3478, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34286719

RESUMO

This work reports the first amperometric immunosensor for the simultaneous determination of four fertility-related hormones in saliva: progesterone (P4), luteinizing hormone (LH), estradiol (E2), and prolactin (PRL). The immune platform involves direct competitive (P4 and E2), and sandwich (LH and PRL) assays implemented onto functionalized magnetic microbeads (MBs). The amperometric transduction was performed upon placing the MBs-immunoconjugates onto each of the four working electrodes of the SPCE array (SP4CEs) and applying a detection potential of -0.20 V (vs. Ag pseudo-reference electrode) using the H2O2/hydroquinone (HQ) system. The achieved analytical and operational characteristics of the developed multiplexed immunoplatform showed a sensitivity that allows the determination of these hormones in saliva, and an adequate selectivity to analyse complex clinical samples. The bioplatform was employed for the determination of the set of four hormones in human saliva samples collected from individuals with different hormonal profiles. The results obtained using a conventional potentiostat were compared with those provided employing a novel low-cost custom-designed and field-portable quadruple potentiostat. Similar results were found which also agreed with those obtained by applying ELISA methods for the determination of single hormones.


Assuntos
Técnicas Biossensoriais , Saliva , Fertilidade , Hormônios , Humanos , Peróxido de Hidrogênio , Imunoensaio
8.
Talanta ; 225: 122054, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592776

RESUMO

Matrix metalloproteinase 9 (MMP-9) is a zinc-dependent endopeptidase that promotes angiogenesis, tumor growth, metastasis and cell invasion through the degradation of extracellular matrix. This work reports a magnetic microbeads (MBs)-based sandwich immunoassay for the amperometric determination of MMP-9 at screen-printed carbon electrodes (SPCEs). The suitable capture antibody (cAb) is immobilized onto carboxylic MBs to selectively capture the antigen which is sandwiched with a biotinylated detector antibody (biotin-dAb) further conjugated with a commercial streptavidin-horseradish peroxidase (Strep-HRP) polymer. This immunoplatform provides great analytical characteristics in terms of selectivity and sensitivity, achieving a LOD value of 2.4 pg mL-1 for standards in buffered solutions. Although this value is similar to those reported for some other approaches described so far, the method described here is simpler involving a single 30 min incubation step which makes it ideal for automation or implementation in POC devices. Moreover, the method was assayed for the accurate determination of endogenous MMP-9 in both cancer cell lysates and serum samples of patients diagnosed with different subtypes of breast cancer (BC) after a simple dilution. The results obtained show that the disposable and affordable immunoplatform developed is able not only to discriminate BC patients from healthy individuals but also to do it for the worst outcome triple negative (TNBC) subtype.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Técnicas Eletroquímicas , Eletrodos , Humanos , Imunoensaio , Limite de Detecção , Metaloproteinase 9 da Matriz
9.
Anal Bioanal Chem ; 413(3): 799-811, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32474723

RESUMO

Early diagnosis in primary care settings can increase access to therapies and their efficiency as well as reduce health care costs. In this context, we report in this paper the development of a disposable immunoplatform for the rapid and simultaneous determination of two protein biomarkers recently reported to be involved in the pathological process of neurodegenerative disorders (NDD), tau protein (tau), and TAR DNA-binding protein 43 (TDP-43). The methodology involves implementation of a sandwich-type immunoassay on the surface of dual screen-printed carbon electrodes (dSPCEs) electrochemically grafted with p-aminobenzoic acid (p-ABA), which allows the covalent immobilization of a gold nanoparticle-poly(amidoamine) (PAMAM) dendrimer nanocomposite (3D-Au-PAMAM). This scaffold was employed for the immobilization of the capture antibodies (CAbs). Detector antibodies labeled with horseradish peroxidase (HRP) and amperometric detection at - 0.20 V (vs. Ag pseudo-reference electrode) using the H2O2/hydroquinone (HQ) system were used. The developed methodology exhibits high sensitivity and selectivity for determining the target proteins, with detection limits of 2.3 and 12.8 pg mL-1 for tau and TDP-43, respectively. The simultaneous determination of tau and TDP-43 was accomplished in raw plasma samples and brain tissue extracts from healthy individuals and NDD-diagnosed patients. The analysis can be performed in just 1 h using a simple one-step assay protocol and small sample amounts (5 µL plasma and 2.5 µg brain tissue extracts). Graphical abstract.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dendrímeros/química , Ouro/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Doenças Neurodegenerativas/diagnóstico , Poliaminas/química , Proteínas tau/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a DNA/sangue , Eletrodos , Humanos , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/metabolismo , Proteínas tau/sangue
10.
Biosensors (Basel) ; 10(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339199

RESUMO

Harmful algal blooms (HABs) are more frequent as climate changes and tropical toxic species move northward, especially along the Iberian Peninsula, a rich aquaculture area. Monitoring programs, detecting the presence of toxic algae before they bloom, are of paramount importance to protect ecosystems, aquaculture, human health and local economies. Rapid, reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention as an alternative to the legally required but impractical microscopic counting-based techniques. Our electrochemical detection system has improved, moving from conventional sandwich hybridization protocols using different redox mediators and signal probes with different labels to a novel strategy involving the recognition of RNA heteroduplexes by antibodies further labelled with bacterial antibody binding proteins conjugated with multiple enzyme molecules. Each change has increased sensitivity. A 150-fold signal increase has been produced with our newest protocol using magnetic microbeads (MBs) and amperometric detection at screen-printed carbon electrodes (SPCEs) to detect the target RNA of toxic species. We can detect as few as 10 cells L-1 for some species by using a fast (~2 h), simple (PCR-free) and cheap methodology (~2 EUR/determination) that will allow this methodology to be integrated into easy-to-use portable systems.


Assuntos
Monitoramento Ambiental , Proliferação Nociva de Algas , Técnicas Biossensoriais/métodos , Carbono , Ecossistema , Técnicas Eletroquímicas , Eletrodos , Humanos , Hibridização de Ácido Nucleico , Poluentes da Água/análise
11.
Biosens Bioelectron ; 163: 112238, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568700

RESUMO

This work reports a new sensitive strategy for the determination of tau protein, a hallmark of Alzheimer's disease (AD), involving a sandwich immunoassay and amperometric detection at disposable screen-printed carbon electrodes (SPCEs) modified with a gold nanoparticles-poly(amidoamine) (PAMAM) dendrimer nanocomposite (3D-Au-PAMAM) covalently immobilized onto electrografted p-aminobenzoic acid (p-ABA). The capture antibody (CAb) was immobilized by crosslinking with glutaraldehyde (GA) on the amino groups of the 3D-Au-PAMAM-p-ABA-SPCE, where tau protein was sandwiched with a secondary antibody labeled with horseradish peroxidase (HRP-DAb). Amperometry at -200 mV (vs the Ag pseudo-reference electrode) upon the addition of hydroquinone (HQ) as electron transfer mediator and H2O2 as the enzyme substrate was used to detect the immunocomplex formation. The great analytical performance of the immunosensor in terms of selectivity and low limit of detection (LOD) (1.7 pg mL-1) allowed the direct determination of the target protein in raw plasma samples and in brain tissue extracts from healthy individuals and post mortem diagnosed AD patients, using a simple and fast protocol.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , Doença de Alzheimer/diagnóstico , Encéfalo , Carbono , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Peróxido de Hidrogênio , Imunoensaio , Limite de Detecção , Proteínas tau
12.
Sensors (Basel) ; 20(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560028

RESUMO

Nowadays, electrochemical biosensors are reliable analytical tools to determine a broad range of molecular analytes because of their simplicity, affordable cost, and compatibility with multiplexed and point-of-care strategies. There is an increasing demand to improve their sensitivity and selectivity, but also to provide electrochemical biosensors with important attributes such as near real-time and continuous monitoring in complex or denaturing media, or in vivo with minimal intervention to make them even more attractive and suitable for getting into the real world. Modification of biosensors surfaces with antibiofouling reagents, smart coupling with nanomaterials, and the advances experienced by folded-based biosensors have endowed bioelectroanalytical platforms with one or more of such attributes. With this background in mind, this review aims to give an updated and general overview of these technologies as well as to discuss the remarkable achievements arising from the development of electrochemical biosensors free of reagents, washing, or calibration steps, and/or with antifouling properties and the ability to perform continuous, real-time, and even in vivo operation in nearly autonomous way. The challenges to be faced and the next features that these devices may offer to continue impacting in fields closely related with essential aspects of people's safety and health are also commented upon.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Nanoestruturas , Incrustação Biológica , Calibragem , Sistemas Automatizados de Assistência Junto ao Leito
13.
Biosens Bioelectron ; 160: 112233, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469729

RESUMO

This work reports the first amperometric biosensor involving the use of neutravidin-functionalized magnetic microbeads (NA-MBs) modified with a biotinylated-anti-dsDNA (b-dsDNA) as efficient magnetic microcarriers to selectively capture anti-dsDNA autoantibodies (IgG, IgA and IgM AAbs) present in the sera of patients with rheumatoid arthritis (RA). Subsequently, the attached anti-dsDNA AAbs are detected with a mixture of conventional HRP-labeled secondary antibodies (HRP-anti-human IgG/IgM/IgA mixture). The biorecognition event is monitored by amperometric transduction using the hydroquinone (HQ)/H2O2 system upon capturing the modified MBs on the surface of screen-printed carbon electrodes (SPCEs). The developed bioplatform exhibits a linear calibration plot ranging from 1 to 200 IU mL-1 with a LOD of 0.3 IU mL-1 for anti-dsDNA AAbs standards. In addition, the biosensor allows performing the determination of the anti-dsDNA AAbs levels directly in 100-times diluted serum samples from patients diagnosed with RA and in just 75 min. The obtained results are in agreement with those provided by an ELISA kit and allow discrimination between positive and negative samples.


Assuntos
Artrite Reumatoide/sangue , Autoanticorpos/sangue , DNA/imunologia , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/métodos , Biotinilação , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/métodos , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Fatores de Tempo
14.
Biosensors (Basel) ; 10(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041251

RESUMO

The presence of allergens and adulterants in food, which represents a real threat to sensitized people and a loss of consumer confidence, is one of the main current problems facing society. The detection of allergens and adulterants in food, mainly at the genetic level (characteristic fragments of genes that encode their expression) or at functional level (protein biomarkers) is a complex task due to the natural interference of the matrix and the low concentration at which they are present. Methods for the analysis of allergens are mainly divided into immunological and deoxyribonucleic acid (DNA)-based assays. In recent years, electrochemical affinity biosensors, including immunosensors and biosensors based on synthetic sequences of DNA or ribonucleic acid (RNA), linear, aptameric, peptide or switch-based probes, are gaining special importance in this field because they have proved to be competitive with the methods commonly used in terms of simplicity, test time and applicability in different environments. These unique features make them highly promising analytical tools for routine determination of allergens and food adulterations at the point of care. This review article discusses the most significant trends and developments in electrochemical affinity biosensing in this field over the past two years as well as the challenges and future prospects for this technology.


Assuntos
Alérgenos/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Hipersensibilidade Alimentar/metabolismo , Humanos
15.
Anal Bioanal Chem ; 412(21): 5031-5041, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31745609

RESUMO

This paper reports a simple electrochemical strategy for the determination of microRNAs (miRNAs) using a commercial His-Tag-Zinc finger protein (His-Tag-ZFP) that binds preferably (but non-sequence specifically) RNA hybrids over ssRNAs, ssDNAs, and dsDNAs. The strategy involves the use of magnetic beads (His-Tag-Isolation-MBs) as solid support to capture the conjugate formed in homogenous solution between His-Tag-ZFP and the dsRNA homohybrid formed between the target miRNA (miR-21 selected as a model) and a biotinylated synthetic complementary RNA detector probe (b-RNA-Dp) further conjugated with a streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The electrochemical detection is carried out by amperometry at disposable screen-printed carbon electrodes (SPCEs) (- 0.20 V vs Ag pseudo-reference electrode) upon magnetic capture of the resultant magnetic bioconjugates and H2O2 addition in the presence of hydroquinone (HQ). The as-prepared biosensor exhibits a dynamic concentration range from 3.0 to 100 nM and a detection limit (LOD) of 0.91 nM for miR-21 in just ~ 2 h. An acceptable discrimination was achieved between the target miRNA and other non-target nucleic acids (ssDNA, dsDNA, ssRNA, DNA-RNA, miR-122, miR-205, and single central- or terminal-base mismatched sequences). The biosensor was applied to the analysis of miR-21 from total RNA (RNAt) extracted from epithelial non-tumorigenic and adenocarcinoma breast cells without target amplification, pre-concentration, or reverse transcription steps. The versatility of the methodology due to the ZFP's non-sequence-specific binding behavior makes it easily extendable to determine any target RNA only by modifying the biotinylated detector probe.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , MicroRNAs/análise , Dedos de Zinco , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Limite de Detecção
16.
Nanomaterials (Basel) ; 9(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739523

RESUMO

In the last fifteen years, the nucleic acid biosensors and delivery area has seen a breakthrough due to the interrelation between the recognition of nucleic acid's high specificity, the great sensitivity of electrochemical and optical transduction and the unprecedented opportunities imparted by nanotechnology. Advances in this area have demonstrated that the assembly of nanoscaled materials allows the performance enhancement, particularly in terms of sensitivity and response time, of functional nucleic acids' biosensing and delivery to a level suitable for the construction of point-of-care diagnostic tools. Consequently, this has propelled detection methods using nanomaterials to the vanguard of the biosensing and delivery research fields. This review overviews the striking advancement in functional nanomaterials' assisted biosensing and delivery of nucleic acids. We highlight the advantages demonstrated by selected well-known and rising star functional nanomaterials (metallic, magnetic and Janus nanomaterials) focusing on the literature produced in the past five years.

17.
Sensors (Basel) ; 19(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480367

RESUMO

Nowadays, analyzing circulating tumor DNA (ctDNA), a very small part of circulating free DNA (cfDNA) carried by blood, is considered to be an interesting alternative to conventional single-site tumor tissue biopsies, both to assess tumor burden and provide a more comprehensive snapshot of the time-related and spatial heterogeneity of cancer genetic/epigenetic scenery. The determination of ctDNA and/or mapping its characteristic features, including tumor-specific mutations, chromosomal aberrations, microsatellite alterations, and epigenetic changes, are minimally invasive, powerful and credible biomarkers for early diagnosis, follow-up, prediction of therapy response/resistance, relapse monitoring, and tracking the rise of new mutant subclones, leading to improved cancer outcomes This review provides an outline of advances published in the last five years in electrochemical biosensing of ctDNA and surrogate markers. It emphasizes those strategies that have been successfully applied to real clinical samples. It highlights the unique opportunities they offer to shift the focus of cancer patient management methods from actual decision making, based on clinic-pathological features, to biomarker-driven treatment strategies, based on genotypes and customized targeted therapies. Also highlighted are the unmet hurdles and future key points to guide these devices in the development of liquid biopsy cornerstone tools in routine clinical practice for the diagnosis, prognosis, and therapy response monitoring in cancer patients.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/métodos , DNA Tumoral Circulante/sangue , Técnicas Eletroquímicas/métodos , Neoplasias/genética , Técnicas Biossensoriais/instrumentação , DNA Tumoral Circulante/análise , DNA Viral/sangue , Técnicas Eletroquímicas/instrumentação , Humanos , Biópsia Líquida , Mutação , Neoplasias/sangue
18.
Mikrochim Acta ; 186(7): 411, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31183566

RESUMO

This paper describes a dual electrochemical immunoassay for the simultaneous determination of IL-13Rα2 and CDH-17, two biomarkers of emerging relevance in metastatic processes. The sandwich assay uses a screen-printed dual carbon electrode that was electrochemically grafted with p-aminobenzoic acid to allow the covalent immobilization of capture antibodies. A hybrid composed of graphene quantum dots (GQDs) and multiwalled carbon nanotubes (MWCNTs) act as nanocarriers for the detection antibodies and horseradish peroxidase. The use of this hybrid material considerably improves the assay (in comparison to the use of MWCNTs) due to the peroxidase mimicking activity of the GQDs. The method works at a low working potential (0.20 V vs. Ag pseudo-reference electrode) and thus is not readily interfered by unknown electroactive species. The dual immunoassay allows for the selective determination of both biomarkers with LOD values of 1.4 (IL-13sRα2) and 0.03 ng mL-1 (CDH-17). The simultaneous determination of IL-13Rα2 and CDH-17 was accomplished in lysates from breast and colorectal cancer cells with different metastatic potential, and in paraffin-embedded tumor tissues extracts from patients diagnosed with colorectal cancer at different stages. The applicability to discriminate the metastatic potential even in intact cells through the detection of both extracellular receptors has been demonstrated also. The assay can be performed within 3 h, requires small sample amounts (0.5 µg), and has a simple protocol. Graphical abstract Dual amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 in human colorectal cancer cells and tissues by using grafted screen-printed electrodes and composites of quantum dots and carbon nanotubes as nanocarriers.


Assuntos
Biomarcadores Tumorais/análise , Caderinas/análise , Imunoensaio/métodos , Subunidade alfa2 de Receptor de Interleucina-13/análise , Nanotubos de Carbono/química , Pontos Quânticos/química , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Técnicas Eletroquímicas , Eletrodos , Grafite/química , Humanos , Proteínas Imobilizadas/química , Limite de Detecção , Metástase Neoplásica/diagnóstico , Sensibilidade e Especificidade
19.
Anal Chim Acta ; 1011: 28-34, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29475482

RESUMO

A new label-free electrochemical immunosensor is constructed for the selective and sensitive determination of the clinically relevant biomarker receptor tyrosine kinase (AXL) in human serum. The disposable immunosensing platform is prepared by immobilization of the specific anti-AXL antibody onto amine functionalized graphene quantum dots (fGQDs)-modified screen-printed carbon electrodes (SPCEs). The affinity reactions were monitored by measuring the decrease in the differential pulse voltammetric (DPV) response of the redox probe Fe(CN)63-/4-. All the experimental variables involved in the preparation of the modified electrodes and in the immunosensor performance were optimized. The as prepared immunosensor exhibits an improved analytical performance with respect to other electrochemical immunosensors reported so far, with a wider range of linearity and a lower detection limit, 0.5 pg mL-1, which is more than one hundred thousand times lower than the established cut-off value for heart failure (HF) diagnosis in serum (71 ng mL-1). The developed immunosensor was successfully applied to the determination of the endogenous content of AXL in serum of HF patients without any matrix effect observed after just a sample dilution.


Assuntos
Grafite/química , Impressão , Proteínas Proto-Oncogênicas/sangue , Pontos Quânticos/química , Receptores Proteína Tirosina Quinases/sangue , Biomarcadores/sangue , Técnicas Eletroquímicas , Eletrodos , Humanos , Imunoensaio , Tamanho da Partícula , Propriedades de Superfície , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...